Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thomas C. Baddeley, ${ }^{\text {a }}$ Simon M. Clow, ${ }^{\text {b }}$ Philip J. Cox, ${ }^{\text {b }} *$ Iain G. Davidson, ${ }^{\text {c }}$ Clare Ryder ${ }^{\text {c }}$ and James L. Wardell ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Aberdeen University, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ${ }^{\mathbf{b}}$ School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland, and ${ }^{\text {E Elan Drug Delivery, }}$ 1 Mere Way, Ruddington, Nottingham NG11 6JS, England

Correspondence e-mail: p.j.cox@rgu.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in main residue
R factor $=0.053$
$w R$ factor $=0.154$
Data-to-parameter ratio $=7.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Disordered 4,4'-di-O-isobutyroyl-2,2',-3,3',6,6'-hex-O-acetyl- a, a^{\prime}-trehalose

The twofold symmetry of the title compound, $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{19}$, coincides with a crystallographic twofold axis. Weak C $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and a disordered isobutyroyl group are present.

Comment

Recently we have determined the structures of a number of substituted trehalose derivatives. These have included hydrated or solvated forms, such as $2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-hexa-$O$-acetato- $6,6^{\prime}$-bis- O-isobutanoyl- α, α^{\prime}-trehalose 0.7 -hydrate (Clow et al., 2001), 2, 2',3,3',4,6,6'-hepta- O-pivaloyl- α, α^{\prime}-trehalose (Baddeley et al., 2003) and $2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}, 6,6^{\prime}$-hexa- O -acetato- α, α^{\prime}-trehalose ethyl acetate solvate (Baddeley et al., 2001). The anyhdrous symmetrically substituted $2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}-$ hexa- O-acetato- $6,6^{\prime}$-bis- O-trityl- α, α^{\prime}-trehalose (Baddeley et al., 2002) possesses molecular twofold symmetry, coinciding with a crystallographic twofold axis.

The disordered structure reported here, $2,2^{\prime}, 3,3^{\prime}, 4,6,6^{\prime}-$ hepta- O-pivaloyl- α, α^{\prime}-trehalose, (I), also possesses molecular twofold symmetry, coinciding with a crystallographic twofold axis. As this axis passes through the bridging oxygen at $\left(-x+\frac{1}{2}, \frac{1}{2}+x, \frac{1}{4}\right)$, the molecular geometry shown in Table 1 applies to both halves of the molecule. As expected, the pyranose ring has a ${ }^{4} C_{1}$ conformation, as indicated by the puckering parameters (Cremer \& Pople, 1975), calculated with PLATON (Spek, 2001), $Q=0.556$ (4) $\AA, \theta=1.5$ (4) ${ }^{\circ}$ and $\varphi=$ $52(8)^{\circ}$.

The pseudo-torsion angle $\mathrm{H} 1-\mathrm{C} 1 \cdots \mathrm{C}^{\prime}-\mathrm{H} 1^{\prime}$ of the glycosidic linkage is -89.1°. In the ditrityl hexaacetate derivative of α, α^{\prime}-trehalose, where the bridging oxygen also lies on a twofold axis, the pseudo-torsion angle is -104.7° (Baddeley et al., 2002).

The substitution at $\mathrm{C} 1, \mathrm{C}^{\prime}$ is α, α^{\prime}, with $\mathrm{C} 1-\mathrm{O} 1=$ 1.417 (4) \AA and the angle subtended at $\mathrm{O} 1=113.1$ (4) ${ }^{\circ}$. The absolute configuration adopted (see below) is R at $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, C4 and C5. Disorder is present in the isobutyroyl group, with atoms O8, C13, C14, C15 and C16 disordered over two sites

Received 12 May 2003 Accepted 14 May 2003 Online 23 May 2003

Figure 1
The atomic arrangement in the molecule (disorder excluded). Displacement ellipsoids are drawn at the 50% probability level.
with fixed occupancies of 0.5 . There are no $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, but there are weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which are listed in Table 2 (disordered atoms excluded). The disordered structure of $2,2^{\prime}, 3,3^{\prime} 4,6,6^{\prime}$-hepta- O-pivaloylα, α^{\prime}-trehalose (Baddeley et al., 2003) also possesses $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Experimental

$2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}$-Hexaacetyl- α, α^{\prime}-trehalose, prepared according to the method of Bredereck (1930), was dissolved in 1:1 pyridine-water and stirred at room temperature for 48 h . At this time, thin-layer chromatography (EtOAc) showed the acyl migration to be complete. The solvent was removed under vacuum and the resulting solid recrystallized from DCM/MTBE. 2, 2', $3,3^{\prime}, 6,6^{\prime}$-Hexaacetyl- α, α^{\prime}-trehalose was dissolved in pyridine and 2.1 equivalents of isobutyroyl chloride added with stirring. After 4 h the solution was added to water. The resulting solid was collected, washed with water and dried. Recrystallization from ethanol gave 4,4'-di- O-isobutyroyl-2, $2^{\prime}, 3,3^{\prime}, 6,6^{\prime}$-hexa-$O$-acetyl- α, α^{\prime}-trehalose (m.p. 397-399 K).

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{19}$
$M_{r}=734.69$
Tetragonal, $P 4_{1} 2_{1} 2$
$a=14.9188$ (9) A
$c=17.8355$ (6) \AA
$V=3969.7$ (4) \AA^{3}
$Z=4$
$D_{x}=1.229 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5000
reflections
$\theta=1.9-25.7^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Lozenge, colourless
$0.45 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad($ SORTAV; Blessing, 1995, 1997)
$T_{\min }=0.956, T_{\max }=0.985$
50356 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.155$
$S=1.01$
2206 reflections
281 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1016 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.37$ e \AA^{-3}
Extinction correction: SHELXL97
Extinction coefficient: 0.0117 (18)

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.417(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.514(5)$
$\mathrm{O} 5-\mathrm{C} 5$	$1.432(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.515(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.499(5)$		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 1^{\mathrm{i}}$	$113.1(4)$		
$\mathrm{H} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}-\mathrm{H} 1^{\mathrm{i}}$	-89.1		
Symmetry code: (i) $1-y, 1-x, \frac{1}{2}-z$.			

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{iii}}$	1.00	2.53	$3.487(4)$	161
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.99	2.37	$3.217(8)$	143
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\mathrm{iv}}$	0.98	2.53	$3.412(10)$	150
$\mathrm{C} 8-\mathrm{H} 8 C \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.59	$3.528(8)$	161
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.58	$3.454(5)$	148
Symmetry codes:	(i)	$1-y, 1-x, \frac{1}{2}-z$	(ii)	$y, x,-z ;$
$\frac{1}{2}-y, x-\frac{1}{2}, \frac{1}{4}+z ;$	(iii)	$\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{4}-z ;$	(iv)	

The H atoms were initially placed in calculated positions and thereafter allowed to ride on their attached atoms, with isotropic displacement parameters 1.2 times $U_{\text {eq }}$ of the attached atom. The weakly diffracting and disordered structure resulted in a low reflection/parameter ratio, and several atoms in the disordered structure were associated with large displacement parameters where the statistical distributions could not be assigned.

A similar refinement in the alternative space group $\left(P 4_{3} 2_{1} 2\right)$ cannot be discounted. Further, the choice of the disorder (A or B) in the affected chain is not random, as atom $O 8 B$ is separated from its symmetry-equivalent by only 1.76 (1) \AA across $y, x,-z$. Hence the x, y, z and the $y, x,-z$ sites must be occupied by different orientations of the side chain. In the absence of atomic species with an atomic number greater than that of oxygen, Friedel pairs were merged prior to refinement. As a consequence, the Flack (1983) x parameter and absolute configuration are indeterminate from the intensity data alone. The latter has therefore been established simply on the basis of the known stereochemistry of the parent trehalose.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and $C O L L E C T$; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1998); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC for use of the National Crystallographic Service at Southampton University (X-ray data
collection) and for the use of the Chemical Database Service at Daresbury (Fletcher et al., 1996).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Baddeley, T. C., Clow, S. M., Cox, P. J., Davidson, I. G., Howie, R. A. \& Wardell, J. W. (2002). Acta Cryst. E58, o476-o477.
Baddeley, T. C., Clow, S. M., Cox, P. J., Davidson, I. G., Murdoch, A. M. \& Wardell, J. W. (2003). Acta Cryst. E59, o753-o755.
Baddeley, T. C., Clow, S. M., Cox, P. J., McLaughlin, A. M. \& Wardell, J. W. (2001). Acta Cryst. E57, o456-o457.

Bredereck, H. (1930). Chem. Ber. 63B, 959-965.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Clow, S. M., Cox, P. J., Gilmore, G. I. \& Wardell, J. L. (2001). Acta Cryst. E57, o77-o78.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1998). SHELX97-2. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. Version 101201. University of Utrecht, The Netherlands.

